SS 332			A CONTRACTOR	20	N 4990		2	
	Page No: Date.	P					Page No Date.	
(X				and the second second second	0.01 0	0.1	10	
»[Concept of continuum -> continuous medius			10.1	1 1		1	
	Properties like pressure, temp density et are defined continuous function of species that molecules are closed		Conti	nnum flou	strp D. flow	Tran rec	si hion Ji'me	Free molecular Flow
	spaced ie. Gap between molecules is almost zero. But this is not true gases at		Vesco. the	sity - propee	> Visco	flui	ts the	defined as
	By Arogadio hypothesis. By Arogadio hypothesis. 6.023 × 10 ²³ molecules per 22.4 l.		stance fluid fluid	over	anothe	e adjo	of or icent	layer of the
	Depaite 0:7×1025 molecules/m3	1. N	1		TKS	10	· 1	
1	parmal temp. 4 pressure					at		<u>.</u>
1	norma temp		Shear	stres	is is a	durectl	7 pro	portional to
1	Decrease in pressure results in increase		rate	ot	change	of a	gle 1	w.r.t.time
	in agrie mean free path of molecules	27	1	7		1	~ 1	dux dt :
	4 also decrease in cohesive force, henry	dy	do		tan	q = 5	dudt	2 44/41
1	concept of continnum doesn't valid.		1		1400	10 -	dy	
1	and the second				If	0 is	Smal	$1 + q_0 = 0$
1	$\lambda \rightarrow$ Mean Free path			_	ie .	do -	dus	(dt
	L -> characterstics dimension of the		-1-4	r		~~	d	7
1 - 11-	problem ie. for pipe dia.d.		a Ba			do	- d	u_
	> knudsen number serves	Sel .			er Barr	dt		47
	- criteria to define continnum.	1		Lotter	20. 1 50	w.11	n le	and the second second
1 1	the state of the s				TKd	ч		
	> < 0.01 (Continnum is	- inite	1 10 1		d	1×	181-51	
	valid)		. Halak	41	7 = 1	dy	New	otons Law of
10.30						dy		viscosity
		-						5
and the second s		-		56.66.5	53-2	1.2		10000 5040

<u>H = Coefficient of dynamic viscosity</u> <u>ac viscosity</u> <u>du = Rate of shear strain or velocity</u> <u>dy gradient</u>	$ \overline{\begin{array}{c} Page No: \\ Date. \\ Date. \\ \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaa$
<u>u</u> = <u>Coefficient</u> of <u>dynamic</u> <u>viscosity</u> <u>oc</u> <u>viscosity</u> . <u>du</u> = <u>Rate of</u> <u>shear</u> <u>strain</u> <u>or</u> <u>velocity</u> <u>dy</u> <u>gradient</u> .	$ \overline{z} = m \left(\frac{du}{dy} \right)^n \\ = m \left \frac{du}{dy} \right ^{n-1} \frac{du}{dy} $
$SI unit \rightarrow N.S \text{ or } Pa.Sec. Mts.kg m^2 st * 1 Poise = 1 N.S 10 m^2$	This model also known as Ostwald-de-wa- dele model. $\frac{z}{du_{dy}} = u = m \left \frac{dy}{dy} \right ^{n-1} = Apperant$ $\frac{du_{dy}}{dy} = \frac{dy}{dy} = \frac{dy}{dy} = \frac{dy}{dy}$
* Viscosity of water at 20°C is 0.01 poise or 1.0 centipoise of restrict poise of all restrict poise of all shear stress from 100 contraction of 100 centipoise of all restrict poise of all shear of the contraction of 100 centipoise of all of all of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contrac	Where m = Flow behaviour index. n = Flow Consistency index. Bingham Plastic -> Fluid is one that requires a finite yield stress before beginning to flow eg. Sewage Sludge, mud, clay, toothpa- ste
du (velocity dy gradient) Newtonian fluid → Shear stress is directly proportional to the rate of shear strain	Pseudoplastic → Shear thinning → Appearant Viscosily of pseudoplastic fluid decreases wi- th increase in shear rate may be qualitati- vely attributed to breakdown of loosely bon- ded aggregates by shearing effect of flow- eg. aqueous or non aqueous suspensions of of polymers.
Non-newtonian fluid -> z is not proposition du. It follows power law model.	

Pa	priv	Cal	dye	* 40		C	8.	dear	* APP		5			• •	1.1.1.1		C	e C	eq.	whi	Mor	close	ant	with	Dild		unarc	40	Rivara		
Sale -	rters (v	led Rh	15 +	pevent	.C	Inilling	. wate	eases	earant		K	+/		•	-	77		lena 4	Aqueo	ch ma	e oper	ely pa	fluids	increa	ant +	*	8 . 1 .	Plow by	Heishe		
S-2-	NKs.	eopeetic	ime f	vescos		Fluid	r Susp	with +	Mes cosi				11	11	1			ferro	sus en	x entr	arrai	cked P	may b	se in t	Increme		1 4 K	y it be	- Buckle		
R. 23.00	ł	fluid .	n d ali	The line	-	used i	ension	ime u	ty of		- 		-	1	1		(a) -	stlicon	pension	ap so	nacmen	eeticul	be due	he she	ut in			comes	L L		
	J	P0 . (she che	reases	1	n petro	in ben	ndet co	thixot						60 - Z.V.	b) Rhea	Inixo	S	is of	Me of	- unde	ate sys	to the	ar inte	appear			preudop	+ haus	10	
3		TUPSUM	any vind	with 1	14	leum in	tonitic	instant	ropic f	dy.	du		1. 1997 19			pectic.	tropic		magne	the hi	et she	tem to	shift	tor o	ant vis			lastic	yield o	ittial	
	+	parter,	5	incre-		dusty.	clay	shear.	luids										tote	quid.	eqr		bPn /	Lila!	SCOSIL	1	1	after	tes /	-	7
San Assa		- 13 14					*	-		-		*									*				1		*				
		1 21 - 17		ard fl	to the	Ratio	Specif	der and		2 2 14	fluid	Specifi	-	for w	к 1		1. Mr. 1	5	1	Ratio	Specifi		1000 k	value		f fluid	Density		Properti		
2	for	No. Car	Fr I	uid. U	weigh	of we	nic gra	1 1	18. A. 18	9	to its	ic Volu	-	ader -		Z II	1.11	V II I		of w	C Wei	-	4 m3. 0	of wo	1	4	or ma		es of		
N.	Gases	11	spino		r dens	aht der	wity o		vo	11	Mass	IME -		= W = q	3	<u>a</u> . N	Voluv	Neight		eight o	aht or		14 4°C	uter de	1	ts vo	ss der	11	Fluids		
	dir	1	water	/	ity or	nsity az	iv vela	12	200		· Rec	* Rat	-	0 X 18.		1 3	me of f	of th	2	of flu	Weig			nsity		lume.	ISITY -		7		6
	is st	hit	S S	/	density	densi	itive d		M	1-	iproca	to of		100 = 9	1		f lui'd	ul a	4	id to	ht der			18 19		SI U	Rati				ate.
	andaro	id.	landar		of st	ty of a	ensity		the second	mike	1 of d	volum		N 018		1 T T	V.	PW1	1	its vo	nsity -			M CM3		nit kg	o of m	ò			
	+ luia	7		G.C.	and-	x fluid	ł			ŀ	ensity.	e of		Ma		- 60	YSKS-4			ume.				OR		3	ass			0.000	

× * * B the action of external forces namely Compressibility usually defined tor gase normal measure of its change in volume under 145 rbance momentum Compre ssibility -> Compressibility of any substance is the any unit of mass. It represent relation Il's kinematic quantity as doesn't contain ve ability Kinematic Viscosity -> 19 -X115 vescosily to the densily of For mecury ability of sustaining the oniginal c.45 unit nianee compressive torces. 10. Stoke 13.6 × 1000 in momentum as compared to 11 aur. of fluid to diffuse a distri-5 = v -dv means easy to comptent Ap -> 10-4 m2/sec. cme i.e. stokes S II (B) Sec 11 ---- -ve sign decreate 13.6 3 2 in volume Sec. 13600 Date. Page No: 1 ie. Ratio of Kg m3 fluid 175 den * * * * 1p 4 It indicates air is 20,000 times 0+ Variation of viscosity with temp compressible than liquid water. Liquids -> Cohesive torces + moleculor cut to compress it. incompressible. lity of a substance l'auids. Bulk modulus is usually defined for Bulk modulus is higher means Bulk modulus -> Degree of compressibility E for water -> 2×10° KN/m2 different rating decrease liquids the bulk modulus Reciprocal compressibility. 8 = < M 3 air . h momentum 5 Temp T 8/8p QP 1 cohesive toxies $d9 \cdot v + g dv = 0$ M = trans ter de kn/m2 08 - dv Viscosity 1 is characterized Ŋ 8 V = Paga No: Date. dp -dv/v Constant -Vdp dule diffimore 4 <

* 3 lecules do not possess sufficient energy wever molecules does not stick to the wal ately al energy or surface energy. tace. This energy is known as interfaction Gas interface liquid particles at inter because of Brownian motion. For liquid ain at the interface, they would whim tace But in gases whesive torces are very any net driving force on its molecule tace However when an interface is formed this which the interface by vander waals forces the nates hence increase in Visiosity small + molecular momentum predom does not occur. This implies that inter to overcome this net attraction & rein molecules in liquid between two fluid phases (liquid the solid) Surface Tension -> Consider interface Surface energy per unit area allow surface tension 0 11 dissolved in the liquid & get lost. has sufficient enlergy to overcome are attracted by liquid posticle forms pull. If the interfacial me Energy them to be located on the inter-Arrea dre attracted toward, 32 Date. Page No N-M MX is known m. R 6ride, 512 do2 (Yide) sides pressure Pi 4 Po at its concave & convex cular to the surface finish. force Balance in the direction peependi-Let the surface be subjected to uniform de la $26r_2de_2 \sin(\frac{de_1}{z}) + 26r_1 de_1 \sin(\frac{de_2}{z})$ 12 small angles. (5 r2 + 5r1) dov do 2 = (P1-P1) r1 r2 dovas Sinder or dez Elemental liquid dA Gridei 64202 * 012d02 DP curved surface (Pi-Po) rir2dordo2 doi 7 N Young Laplace eqn. Date. Page No sin day & day 9 N 5r2002 É 11

	Page NO. Date.	Densi			Page No: Date.
	$\Delta P = \sigma \left[\frac{1}{1} + \frac{1}{2} \right]$		-		
	_ Υ ₁ Υ ₂		1 gas	•	6lg
	where,		Liguid		
	$\Delta P = P_1 - P_0$	650	6	· · · · · ·	540
	L Excess pressure	g	Solid.		Osl J.
[IF the liquid surface co-exists with any				
j	er immiscible fluid or gas. on both si		Water glass	<u>st kielo</u>	Mercury glass
	des-then surface tension appears on the	Die .	Hydrophi	°lic	Hydrophobic
	both concave & convex sides. Net surface		0 → Contact	angle	a -> contactangle
	tension torce on surface will be twice.			<90°	0 > 90
			weiting		Non-wetting.
	$\Delta Y = 2 \left(\frac{0}{Y_1} + \frac{0}{Y_2} \right) - 2$	Imp *	Fluid aluna	10 400 1	U.
	Security Course		becomes sol	ero has	o contact. Water drople
	special cases >		no to achie	a min	ause water droplet ty
i	For Schargeal Junit 1		surface ener	av Hene	surface area : 4 ie. mir
	For ophenical inquia diop = $Y_1 = Y_2 = Y$		bas least	surface	e from all shapes sph
	eq o becomes			Surface_	area.
	$\Delta p = 2\sigma$	*	Capillarity -	> Phena	
	γ		liquid Sur	ace in a	small the shall of
ii)	For locuid int o belie h		the odicent	general	level of heading the
	inquia jet cylinancal $Y_2 = Y_1 = \alpha$	2	tube is be	ld weatice	Ily in the limit
	$\Delta p = 0$	1	of liquid su	inface ic	thown as ill they
iii)	For spherical hubble		while the -	all of the	e liquid autors rocese
	pressure from 1		as capillar	depres	stion fsing fsing for the
	the two sides, eq" 2 becomes		1 7		
	$\Delta P = 1 \times 2 \sigma$		Upuso	rd force =	laleinht
	r +6		of	water	diastrical
6		_	Surfa	e tension	Tiffed
			14	Length	x length = 5 vg.

 ce exected by water on the tabline, decreased thence the workdone by water of power prover provide the mest less hence the n decreased of the power per mest less hence then n decreased of the power per mest less hence the n decreased of the test of thest of the test of test of the test of tes	★ Effects of covPlation → 9 The metallic surfaces are damaged & cavities are formed on the surfaces. Normal 3) Noise & which ins 3. Due to pritting achien the cavitation at any point in flowing system, the vapor rization of the liquid starts. The bubbles of this vapour carried by the flowing liquid into the region of high pressure where they collapse giving to itse to high impact pressure the pressure developed by the collapsing bubbles Ps so high that the material from the adjoining boundaries gets eroded to the liquid is flowing is subjected to these high pressure at any point is flowing to itse to high impact pressure the pressure developed by the collapsing bubbles Ps so high that the material from the adjoining boundaries gets eroded the metallic surfaces above which the liquid is flowing is subjected to these high pressure this phenomenon is known as cavitation. Pascal's Law → B figure 12.35.1
Vapour Pressure & Cavitation -> When water heated at atmospheric pre- ssure water boils at 100°C. When vapouri	at a point in a static fluid is A c.
zation takes place the molecules escapes from the free surface of the liquid. If pressure of water at temp 20°C reduced by some means such that pressure equil or less than vapour pressure the water	Forces acting on fluid element) Pressure forces normal to the surfaces.) Neight of the element in the vertical dire- ction. [B×V×9] Force on AB → Px × Area of AB.
starts boiling at 20°C. Thus a liquid may boil even at ordinacy temp.	$\frac{\rightarrow p_{\chi} \cdot d_{\chi} \cdot 1}{\text{force on } B_{C} \rightarrow P_{\chi} \times d_{\chi} \times 1}$ force on Ac $\rightarrow P_{\chi} \times d_{\chi} \times 1$

	Total Body Force FB = [[[XSdr	X (Body force X = Body torce vector per vector) unit mass.	fores of the me density S.	Sarfaceforce d' & S in which element dy & havi	Hydrastatic Pressure -> P [7 Let consider fluid element of	at any point is the same in all directions.	Since the choice of fluid element was com- pletely arbitrary, which means the pressure	Hence $P_x = P_y = P_z$ or $G_x = G_y = G_z$ Compostress.	$p_{y} y_{x} U = p_{z} dz p_{y} = p_{z}$	ent is negligible.	Py xdx x1-Pz xds x1005(90-0) -dx dx x1x e	$P_X d_{Y} \cdot I = P_Z d_{Y} \cdot I P_X = P_Z.$	$ds \cos \theta = AB = dy$	Px xdy.1 - p.as.1x5111 (10 0)	$\sum f_{x=0}$	Fluid is at rest; hence.	Date.
in the z direction hence above eq.	85-= 2×5 = 2e	0 = Kx 8 = 10	J 22 = 8x2 = 0	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$de \frac{1}{3} + \frac{1}{3}e \frac{1}{3} + \frac{1}{3}e \frac{1}{3} = \frac{1}{3} + \frac{1}{3}e \frac{1}{3} + \frac{1}{3}e \frac{1}{3} + \frac{1}{3}e \frac$	hence $\nabla P = S \times = 0$ $\nabla P = S \times 1$	It is valid for any volume of fluid. 4	$\int \int \frac{dz}{dz} = $	gradient D.	Gauss Divergence theorem, change	$Xq = 0$ $\int \int \frac{1}{\sqrt{2}} \frac{1}{$		For + Fr = 0		Total Surface force - (-To P dA		Page No: Date.

s so	Stant temp. P = SET & = constant	For Isothermal fluid ->	Po = Local atmospheric Pressure.	P = PotSgh Toricellis Principle	$h = \frac{1}{2} = $	$\dot{c} = \{o + S \} Z o$	$x_{0} = r_{0} = -88 z_{0} + C$	$Tf. p = p_0 U. Z = Z_0.$	For incompressible flow, $g = constant$. p = -ggz + c.	Integration done only when vanishion of g & p & z is known.	AZ	pr Total activity	ction of z only.	$\frac{\partial f}{\partial x} = 0 \frac{\partial f}{\partial y} = 0 \text{pressure is only } f_{\mu\mu}$	Page No:
$lnp = \frac{1}{R_{\star}} ln(\tau_0 - \sqrt{z}) + C$	$\frac{dr}{dz} = -\frac{r}{R}\frac{dr}{dz} = -\frac{r}{R}\frac{dr}{dz} = -\frac{r}{R}\frac{dr}{(t_0 - t_0^2)}$	$\frac{dz}{dz} = -5d$	dp on p-p p	To = absolute temp. at sea level	decrease linearly with z. $T = T_{2} - \sqrt{2}$	Non-isothernal fluid ->		$\frac{P}{P_{a}} = e \times P \left[-\frac{g_{a}}{P_{a}} g \left(z - z_{a} \right) \right]$	$\frac{k_{0}}{l_{0}} = \frac{z}{l_{0}} - \frac{z}{l_{0}} - \frac{z}{l_{0}} - \frac{z}{l_{0}}$	$c = \int e^{\beta} + \frac{2}{\delta} dz$	lnp = - 12 - 50 g2+c.	$\frac{dP}{dr} = -\frac{3}{2} \frac{P}{r} \frac{dZ}{r}$	- SG	Po, So - Reference states	Page No.

KE' * * axis is known as pitching. the transerverse axis much greater than that about the longitudinal axis theme wat to the pitching. the stability of a bled with respect to about its longitudinal axis is known a its rolling is much more important the for ships second moment of area about folling while that about its transerer GM<0 Mis below & GM<0 -> Unstable Angular displacement of a boat or ship MPS coinciding with G GN = 0 - Newlood Mis above q: GM>0 - stable Floating Bodies ---GM = BM-BG where where GM is the metacentric height. F Z 5 BM = Imin ie. Tyz z ·FB Vsubmerged * It body carrying liquid like ships with portrol & diesel Jundergoes and displ the liquid will also more to keep its free sur-face horizontal. Thus Get as well as a changes hence stability of the body is cost, induced For this reason liquid which × * Cargo ships -> Less GM for comfart + tor stability. I yachts -> Larger GM. Highez metacentric height higher stability reduces period of roll & herice less comhas to be put into no of compart ments so as to minimize its movement within the ship. Curved Surfaces -Floating Bodies Containing liquid > Total Force Water Surface dF, at E dA case . G $F = \sqrt{F_x^2 + F_y^2}$ dising. dr = 894×4A Date Page No dF = PXArea " 29hd A

		All they are a second and a second a second a	/ Jncompressible Tlow - S = (oristum	6) T S \$ donstant.	id changes from point to point	5) Compressible flow -> Density of the flu	$\frac{1}{2} \frac{1}{2} \frac{1}$	A MANIMITANA Flain 1 /avi in	$\frac{1}{2} \left(\frac{2}{2} \right) = 0$	dt any given time doesn't change wirtstra-	9) Uniform Flow -> Fluid prop. like velocity		anges wirt time.	2) Unsteady flow -> Fluid prop. at a boint of	$0 = s(\frac{1}{r}e) = s(\frac{1}{r}e) = s(\frac{1}{r}e)$	av - 1 ap /ap	not change in vit time to at a point da	1) chard. fl.	Types of flow ->		used in fluid mechanics.	field. The Eulerian method is common	density are described at a point in flam	2) Eulerian Method -> The velocity , drcln. proc.		Date.
	by α+Δη, μ+Δγ, 2+Δ2	for small time interval at particle moves	W = W(X, X, z) t)	u = u(2, y, z, t)	In the Eulerian form	1) along 2, y, z directions here u, v,	votoronio The infinition of the	thow field given by space co-ordinates	Position of particle at any instant t in a	* Material Derivative and accleration ->	and the streamine.	Wing through the show in wild wild the	10) Transtational Class - Danst atata with a	axis .	rough streamline alwrotates about their own	9) Rotational flow - fluid particle flowing th-		eray loss takes place.	in Zia- Zan way formation of oddion 1 on-	8) Turknilpirt Dan (1.1)	am lines are straight & parallel.	cles move along well defined path or stre-	7) Laminar flow -> flow in which fluid parti-		Date	Page No:

ale:			g ·	aler a	500 mm
		Page No: Date.			Control Mass -> Clased System ->
	R Taylors S	erics we can write,			· · · · · · · · · · · · · · · · · · ·
diana de		1		-	Conservation of mass for fluid flow ->
-	Ay - udy +	124 + 424 + 24 +	H.O.T.		
	st ax	ay az at		d	A fluid being a material body, must obey the
	AV = U DX +	32 32 35 3F	+ H.O.T.	1.	law of conservation of mass in the couse of its flow. If a velocity field V has to exist
	We may a w	+ v dw + w dw +	AN + HIAT		in fluid continum, the velocity components
	at 20	27 22	34		must ober mass cons principle.
	JF At	-> o equis be com	ici.	Sec.	
dist.	1 [lim 4	$u = \underline{D}u$			Continuity equation from Eulerian point of vi-
mit	$\begin{array}{c} Du = 2y \\ Dt = 2t \end{array}$	124 + V24 + W2	u de z	- 10	ew or Control volume approach -> open F system.
	$\frac{DV}{Dt} = \frac{\partial V}{\partial t} +$	UAV + VQU + W	22	19	N E (Wont) & +AX.
101 21	2141	·	in an		(min) te dy G
	DZ at	+ u an + v an +	22	1	X Pres Ar with
*	Total differe	obial D is know	in as mate-	+z	
	pola ante	ntial Ot derivative	P.11) 1.+ . tim		consider aitterennally small rect control volume
	na or subsid				Let a velocity m mass entering in x dir.
*	The derm	au - temporal or	local acil?		le tale ABCD
1		t stanford	iora dat		$(min)_{T} = 2 d \Delta \lambda \times \nabla \Sigma$
*	4 24 + 10 24 2n + 10 24	+w 20 -> Conver	tive accleration	n	Mass leaving from 2+52 ie face EFGR.
Tune	of flow	Material Accleri	ation		(Mont) 2+02 = (Min)2+ 2 (Min)2+02
U) ste	ady + Uniform	iemporal/ Local	Convectore		+ H.o.T.
2) stee	dy + non uniform	0	Exists.		= 54 AYAZ + & SU AYAZ AX + HOT
a) Un	steads & uniform	Exists	0		Net rate of some of the head
4) Un	steady + Non-Unit	Existe	Exists.		we we at mass entering the control volu-
1	-form	KUSD.			$(\dot{m}_{in})_{in} = (\dot{m}_{in},t) = -2 e u \Lambda t \phi \Delta y \Delta t$
					- 0 2x + Ho.T.
1	21 Al 10	188	885 888		

	General firm of continuit
	$(1) - (1) = \frac{1}{28} + \frac{1}{28}$
	0 = M S Ze + NS Ke + NS Ke + Fe
	TUKS KY FOIL
	ZTAKUMS ZC ZVKJKJAS R ZVKJKVANE RC
•	
· 0 = m 8 7 = 1 × 2 = + + × 2 = - + × 2 = - + = - + × 2 = - + = - + × 2 = - + = - = -	Equating 12314
0 = (, 18) . 2	Taking dridy, az > 0 H.O.T > 0
Sindy Ilow, ed (2) becomes	Since Az, by, bz invariant withme
2) For steady flag on a long	= 25 ArayAz Q
Hence eqn 5 becomes. $\nabla \cdot \nabla = n$ $\frac{\partial u}{\partial u} + \frac{\partial v}{\partial v} + \frac{\partial w}{\partial v} = n$	$\dot{M}_{in} = \dot{M}_{out} = \frac{\partial}{\partial t} (M_{cv}) = \frac{\partial}{\partial t} (S \Delta x \Delta y \Delta x) \frac{\partial}{\partial x} $
3) For incompressible flow, 3 = constant w y.t. space as well as time.	(Min)z - (mind) z+ az = -2 & z az ayaz+ Hor-(
V= ju+ jv+ kw.	$(inin) \gamma - (mont) q + b \gamma = -2 & \forall v a x b y a z + Hop -0$
Where $\nabla = i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + \frac{k}{\partial z}$	In similar Fashion we can write for x & z direction also.
Date	Date
	Page No.

Page No: Date. streamlines -> The analytical description of flow velocities by the Eulerian approach is geometrically Idepicted through the concept of streamlines. IF for a fixed instant of time, a space curve is drawn so that it is tangent everywhere to the velocity vector, then this curve is called streamline. Therefore the Eulerian method gives a series of instantaneous streamlines of the state of motion In other words, a streamline at any instant. can be defined as an imaginary currer line in a flow field so that the tangent to the curve at any point represents the direction of the instantaneous velocity of that point. Bundle of Ameighbouring stranling 1 tds 25. stream tube d 3 X V = 0 [Angle between stremlines two vectors o ie. Cross product ds = dxi + dyj + dzk ds XV =0 ie.

Note - The two stream lines can nevez intersections ach other since the instantion the stream location the atways	Page No:
	01
	South and the second se
dx dy dz = 0	1 mg V
W V W	1 / for
1 1 mdy - Vdz) - (wdr-udz) + k(vdx.	The description of pathlines inherently
(1) (1)	involves the variation of time, since a
0= cbu = > 111dr - udo = 0	fluid particle takes time to move from one
$way = 2\pi z$ $way = -2\pi z$	tersect with one another or a single part
wdy - vdz - ' wdx = udz	thline itself can form a loop.
dx - dz dx - dz dx - dx	Nate for steady flow bathlines are identical
V W U E U V	to streamline in as steady the Eulerian
	and the Langrangian refsions becomes the
$\frac{dx}{dx} = \frac{dz}{dz} = \frac{eq^{2}of}{eq^{2}of}$	same.
u v w streamline.	
	Streakline -> A streakline at any inst-
S Pathlines -> pathline is outcome of	ant of time is the locus of the temper-
the Langrangian method in describing	any locations of all particles that have
fluid flow and show the paths of	field. If due inicated point in the them
time A pathline is a trajectory of a	a fixed point in the flow field, then at
fluid northile of a fixed identity. The	a later time t the dar will indicate
refore a family of pathlines represents	the end points of the path lines of
the trajectories of different particles.	particles which have passed through the
(kay p1, 12, 13.	injection point.
	By Langangian method, Ita tura
	which passes through a fixed point (si)
	willing been himself

dw= udx-vdx.	
= -vdx +udx	
ke we	
The the for	
Change in stream function dw	
satisfies the Ionlace conchine	
Note for irrotational flow stream function	and a contract through the second
0- 4 4 0	and the second of the second sec
$\nabla^2 m - \lambda^2 $	pathilics & sileacing we latility
$o = (\frac{\pi}{he})e^{-(\frac{\pi}{he})e^{-}}$	Note for steady this streamling
dx dy	All a la contraction of the later of the lat
$\frac{\partial V}{\partial u} = \frac{\partial v}{\partial u} = 0$	the second secon
For 2.D irrotational flow.	Ster a A
	time S = f F (Sit) t]
is known as stream function	· from ()
con of continuity there the firsting the	$c = f(s_0, t)$
that it automotive at the other	egn of streakline
monnet in a de in a de la de	these point.
TE a function in raw with in defined in a	shreak line can be drawn through
The eq of confinulty is $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$	point (S) are determined then a
	think have parend through the five
$u = u (x_1, y_1, t) v = v (x_1, y_1, t)$	Af the paritions (2) Af the partit
The flow field is such that	volving tor so
stream function $(\Psi) \rightarrow$	num J (So T) = J
	then crait = c
Date.	Date
[Data Ma	Page No.

Page No: Date	Page No:
Eq. of streamline $u = \frac{y}{dx}$ $u dy = \frac{y}{dx}$ $u dy - v dx = 0$ $ie. \text{ on streamline } d\psi = 0 \text{ ie. the value of streamline } d\psi = 0 \text{ ie. the value of streamline } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value of streamline } \frac{y}{dy} = \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value of streamline } \frac{y}{dy} = \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value of streamline } \frac{y}{dy} = \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value of streamline } \frac{y}{dy} = \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy} = \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy} = \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text{ ie. the value } \frac{y}{dy}$ $value of streamline d\psi = 0 \text$	Velocity Potential \rightarrow Irrotationality lead to the condition $\nabla \times \vec{V} = \vartheta$ which demands $\vec{V} = \nabla \phi$ where ϕ is known as a potential function. $\vec{V} = \nabla \phi$ scaler = gradient of scale funct $\Psi = \frac{\partial \phi}{\partial x}$ $\psi = \frac{\partial \phi}{\partial x}$ $\psi = \frac{\partial \phi}{\partial x}$ 2b incompressible flow continuity eqn $\frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} + \frac{\partial \psi}{\partial z} = \vartheta$ Substitute ψ, v, w $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial z^2} = \vartheta$ $= \frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial z^2} = \vartheta$
* The volume of fluid crossing the sur- face AB must be flowing out from	Consider 20, incomp & irrot flow so that both function we a const
Surfaces Ap & BP of unit width. Hence.	$\phi = \phi(x, y) - 2p flow.$ $A\phi = \frac{\partial}{\partial dx} + \frac{\partial}{\partial dx} dx$
= u dy - y dx	$d\phi = u dx + v dx$
dg = dy = y1-y2 ★ Difference between two et cheam function Quan unlynna [lass = 1]	$\frac{dy}{dx} = -\frac{y}{dx}$
gues volume tion rate.	

Sec. 1			
	1000 1000	100	
	Page No:		
	Date.		Page No:
			Date.
and if	2. Discourse stream freshing		
- I	$\psi = \psi(x,y)$	*	A fluid motion. consists of translation,
0440313		and and a start	tation and continuous deformation - I
	dr dy dy		a uniform flow. The fluid elements.
	$D = -ydy + ydy \cdots dy = 0$		simply translated without any deformation
Stora .	$\psi = const.$		or rotation. The deformation & rotation
	dy1 _ 0 V		of fluid element are caused by the var
	dr.lyconst y		due co-ordinate
	$dy = \frac{dy}{dy} = -\frac{U}{x} \sqrt{-1}$	-1	are a namale .
	drigconst drigconst V u		Rate of linear determation 1 strain rate -
	(where u, v = 0)		Pate of change of length of linear fluid
Nicha	T IN H I I I		element per unit original length.
Nore	Implies that the lines of constant & (eq.		$\dot{\epsilon}_{x} = \partial u$ $\dot{\epsilon}_{y} = \partial v$ $\dot{\epsilon}_{z} = \partial u$
	apotential lines & lines of constant y		dr dy dz
	are ormogonal to eachothes overywhere	1.1.1	
	points where the valuation are zero		volumentic strain -> pate of change of
	ie. stranation points.		volume per unit original volume
			Evol - 24 + 20 + 200
	where the strange of the state of		
			Volume of fluid element is donated
	- A - A - A - A - A - A - A - A - A - A	11. 19	by to givel = 1 DV Re def
			¥ ot
		11-	$D\nabla/Dt = 2U + 2V + 2w = V.V$
	The Arthody and the		→ 2 2 y 22
			Evol. = Divergence of velocity.
	·····		Vector
			No volumetric strain for incomp. 1100
2545 4254	10 Mar 1000 10 Mar	226 223	hence $V \cdot V = 0 - 10 \text{ comp} \cdot f^{10} \omega$
		87 XX	

and the to also

		CSR 1925
-	Pagis No.	Page No:
*	Pate of angular deformation $\rightarrow (Exy)$ defined as vate of change of angle between two line elements in the flu- id which were originally perpendicular to each other. $Exy = \frac{dx}{dt} + \frac{d\beta}{dt}$ $= \frac{\partial V}{\partial t} + \frac{\partial u}{\partial t}$ $Eyz = \frac{\partial W}{\partial x} + \frac{\partial u}{\partial z}$ $Eyz = \frac{\partial W}{\partial x} + \frac{\partial u}{\partial z}$	Rotation in a flow field can be expressed in vector form. $ \begin{split} \widetilde{W} &= \frac{1}{2} (\nabla \times \widetilde{V}) \\ \widetilde{W} &= \frac{1}{2} (\nabla \times \widetilde{V}) \\ \widetilde{W} &= \nabla \times \widetilde{V} \Rightarrow \text{Vorticity of flow.} \\ \widetilde{V} &= ui + vj + wk \\ \nabla &= \frac{2}{2\pi}i + \frac{2}{2j}j + \frac{2}{2k}i. \\ \widetilde{V} &= \nabla \times \widetilde{V} = \begin{bmatrix} i & j & k \\ 2\pi & \frac{2}{2j} & \frac{2}{2k} \\ u & v & w \\ \end{bmatrix} $
*	Rotation of fluid element - The rotation of fluid element in the absence of any deformation is known as pure or rigid body rotation.	$= \left(\frac{\partial \omega}{\partial y} - \frac{\partial v}{\partial z}\right)i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial y}\right)j + \left(\frac{\partial v}{\partial z} - \frac{\partial u}{\partial y}\right)k$ $\Box = 2\overline{\omega}$
	Potation is defined as Anithmatic mean of the angular velocities of two perp endicular linear meeting at that point $\omega_{xy} = \frac{1}{2} (\vec{x} - \vec{\beta}) = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$ $\psi_{yz} = \omega_{x} = \frac{1}{2} \left(\frac{\partial w}{\partial x} - \frac{\partial v}{\partial z} \right)$	If an imaginary line is drawn in the fluid element so that the tangent t it at each point is in the direction of the vorticity vector D at that point = w2. the line is called a vortex line. * For Irrolational w = 0 1/2 (VXV = 0) the
	$\hat{W}_{z,x} = \hat{W}_{y} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$	flow

Page No: Date. Dynamics of inviscid flow Dynamics -> In this, role of some of the forcing parameters that influence the mowell as their relation with the tion motion of fluid. Equation of motion for inviscid flow in cast-× estian co-ordinates -> ordinates -> ordinate 7 dz. consider paralle lopiped fluid element as control mass system [closed system] Let br, by, bz -> Body forces acting per unit mass of fluid along x, y, z dir. Newtons second law of motion in x dir. ZFx = (dm) dx As fluid is ideal hence U=0 ie no shear stress only normal stress ie. -ve fluid Body force Mass Pressure. Pdydz - (P+ 2P dn) + 5 brdrdydz = golydydz 24 tu 24 tude tw 20 , Surface force Dist law Accleration. Avablenes in 11:0000 2.0 0-10

* After simplification in an inviscial flow field. Pressure differential between 2 points S tion from torce livection y, z direction. Afler putting values of or or of 1 40 Yo Reds= [reather the thent and select the] s Single vector form. de rest frent hert hert hert he 28 + 862 = 8 ZP Zet to to be the be de - de only gravity y N D O * O O * vector simpline So 54 21 42 21 - 36 - 77 -> Eulers equation of notion get. & considering body 07 20 The marker we the the the acting along b=0 b2 = -9. Page No: - 2 - VP Date. -vez 2 S 0 0 V + di dre oriented in same direction (V × Z) di = 0 Case 2 -> When Z=0 (irrotational final lase 3 -> Case 1 - When did is along streamline the above .eqn becomes. dp + 1 gdv2+ 8gdz + 5 [2v d] - 3x Integrating divide by 8. 44 $dp + \frac{1}{2}gdv^2 + gddz = 0$ 10= sla 12-11 + 1 [22- 22] + g (22-21)=0 E -> Vorticity E = P×V $+ \frac{y_1^2}{2} + \frac{g_{21}}{2} = \frac{g_2}{5} + \frac{y_2^2}{2} + \frac{g_{22}}{2}$ S = constant 400 di -> Position vector = druitdy j+dzk + 12 dv2 + gdz =0 マズネ is perpedicular to di above cqn. Bernoull's equation. $\int \frac{1}{2} dV^2 +$ [WxZ).ds] = 0 Page No: Date. from 1 -1 gdz -0 P

Page No: Date.	Page No: Date
<u>Assumptions</u> \rightarrow	one dimensional clanally Averaged form of the continuity equation.
) Flow is inviscia le 200	Ai
) steady flow	A dy Th
3) Incompressible flow [Fluid Moy be	
compressible of fricompr.	-
4) Foints 1 + 2 are located on sheam	
- 5) Flow nela is nerpendicular to di	Civilian start. Flad through a variable area
=) No work transfer 8) No heat trans	consider steady rious inrough a variable area
	T. EV = 0 for steady flow
eq" can be written as.	Coosider elemental volume dV integrating
$\frac{\beta_1 + V_1^2 + z_1 = \beta_2 + V_2^2 + z_2}{1 + V_2^2 + z_2}$	over domain
<u> </u>	$\left(-\nabla \cdot g \nabla \cdot d \Psi = 0 \right)$
) 4
$= \underbrace{1} z = \underbrace{mgz}_{mgz} = \underbrace{Potential energy}_{mgz} = p$	aledial head Using divergence theorem volume integral
wig weight	conv into area that bounds volume.
$-) \frac{1}{2q} \frac{1}{2} \frac{1}{2}$	head $(QV) n dA = 0$
- Weight	JAS
3) Flow energy/work = FXA2 = P	A AX h -> Unit vector normal to dA
Flow energy = PADY =	PX = P = Pressure Since velocity vector is zero excep
weight 349	Stg Sg. head inflow 4 outflow.
	$\frac{(S\vec{v})\hat{n}dA + S\vec{v}\hat{n}dA = 0}{(S\vec{v})\hat{n}dA + S\vec{v}\hat{n}dA = 0}$
$\frac{1}{100} + \frac{1}{200} + Z = constant$	JAI
	Since one unit hormal vector
in conservation of mechan	n = -1 n = +1
energy,	over Af over Ae

	Page No: Date.		Page No: Date.
	(OULA + (ENDA = 0 - 0)		
h-	AI JAE		Hydrauli's Siphon -> Applications of Bernau
L	is the i component of fi		Ilic eqn.
	V => 15 the velocity		E C
	× V = (V dA		
	Vaverage L		
		_	H H
	Physically vaverage is an equivalent	11	laym.
	whitern velocity that could have given		
	rise to the same winneric two rate		=]-
	as that induced by the vanable velocity		E-SES h
1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Under ansideration		
	V = JA VOR		, dist is 1
- AT	A desta and the A		taxage in particul
	Containing eq U - E	141	AN P
	Si Vi Ai = Se Ve Ae		Fluid always flow from a higher total me-
	TI a - Constant [ingener []]		chanical energy level to lower energy level
1	11 2 = Constant [Incomp. Tion]	17.9	Applying Bernaullis eq at pt A 4B
	AP VIC - AP VI	140	patron nogligion Patro
	AIVI = NE VE	<u></u>	PA + VA + ZA = 18 + VB + Z8 + hf.
4.1	T The second second second		2g 2g 2g
	ALCONTRACTOR AND A STREET	264.75	Ve ² bt
1-1		1000	$Z_{A} - Z_{B} = \frac{1}{29} + \frac{1}{11}$
	Alter and a second s		$\int 2g(h-hf) = Y_B$
	1		
	the second se		$V_8 = \sqrt{2gh}$

		<u>]]</u> .
Bernaullis Equation.	W 20 Kra (2 mot water).	
p II win value acco. to		.1
de man principle et antinuity & pressure	For water the min processive to due	*
velocity reaches at max. at the throat ac		,1
101-" Invergent cone angle = 5-7°	the printer of and printer of the pr	<u>,</u> †
vorsering une angle = 15-20	then the list of the latting of the	
	value investige at the existing tem	,Ť.
tion the section of t	of a highligh becomes canal to its	<u>t</u>
reproduce of flag of energy due to	our locking to start as If the Pressur	,
a) floor to the in conv. portion & gradu	is the pressure for air locking or var	.r ¹
convergent passage is shart & divergent is long	Rut tor a siphon Pc> Pmin where	*
Same under	20 05 05	
	Se - Path - H-hf - VB2	,r
	If friction is present	
23	Pc < Patm.	
	\$9 20 S9	, /
Inflow- O OI OWH	Patm -H - Va ² = Pc	
1 21		
	Ac - V	
Gonvergent Thread Divergent	ba = a - (27 - V7) + (1011) + (77 - V7) + (1011) + (77 - 102) + (1011) +	
1) Venturmeter >	Pin 12 -1 Vol P	
	39 J. 58 J	
pipes) pipes)	$P_{A} + V_{A} + Z_{A} = \frac{1}{1c} + \frac{1}{1c} + \frac{1}{2c} + \frac{1}{2c}$	
	or print n	
	int A & C.	
Page No: Date.	Page No:	

			Ao = Area at onifice.	Ac = A rea at vena contracta.	Ao	(oefficient of contraction - Cc = Ac		$q = A_c V_c$	· · · · · · · · · · · · · · · · · · ·	V 71 Ac2	$V_{C} = C_{V} = V_{C} + V_{$	 are présent	ed to get Vachual as friction losses	Cu -> Coeff. of velocity is determin.	Alt J. A	$\sqrt{\frac{9}{1-\frac{Ac^2}{2}}}$	$V_c = \left[2 \left(P_1 - P_c \right) \right]$		AIVI = Acve	D D D D D D D D D D D D D D D D D D D	62 NS Kr 25	PI + VI2 - PC IVC2		Contractor ouverse	Flow from upsticatin contracts the veng	Linnin intents Int		Page No:
A CO RESPECT OF LEADING THE PARTY	cast of nozzle than venturimeter.	than that for a venturimeter. Lowest	throat due to flow seperation is greate	The dissipation of energy downstream of the	and the same as those for a venturimeter	omitted. Therefore basic cale of flow rate	It's venturimeter with the divergent part	- c la .				3 [[mn wnoole -> CA -> 0.70 to 0.80		aldo number.	/ Amende norm onifical durk over. Pro	μ= (- 2) - μ	I TRA I.I	A hyper of CV.C.	Alz /	$\sqrt{1-\frac{\zeta^2 A_0^2}{2}}$	$S = Cd A_0$ 2gh		AIZ /	V (1- 5c ² Ao ²) 1 (5m -1)or	$Q = C_c A_o C_v / 2q / T_o = 0$		(d for on this o. co to allet	Dana Nat

'in ver adiabatic on isentapic process only	pressure energy. Thus is only possible	fluid particle is willsed to increase its	n hapic means entire kinchic energy of	were brought to rest isentropically. Ise	pressure which could result if the fluid	essure at a point in a fluid flow int	Pstatic - Pstagram	V1 -> Pslat + o = Pstag nation	PI - Psha + Pdy = Istag.		Pshahi = Sgh.	i l'hr. pressure.	HT, dynamic stagnation	Pelatic + 1 chapation = 1 Total	p+ 2 gv = % Total pressure		$\frac{P + \sqrt{2}xs}{20} = C$	mutiply by sg.	P. 65 65	P + V2 107 = C	a fluia flow.	collisions is known as static pressure	budrostatic pressure caused by molecular or	static Prescure -> The thermodynamic	
	V = 129Ah	$\frac{1}{100} - \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89h1+1 842 = 89h2	stag. = Sylnz <u>v=</u> o	Pstatic = Sgh		V-> +	eg 11 6 eg	L=1 34 1. 1-0 p + v2	Pitot tube too flow measurement ->		V - C DA IAPI		molecular energy, due to fluid friction.	part of k.E will be converted into inte	C > empinical factor account for	1 (8)	V= ()2/PP)		$V = \sqrt{2(l_i - l_i)} \rho$		Let $P + I S V^2 = f_0$		Date

の代われていた。

Shear Area.	Shear stress = Shear force	Force balance for fluid element	1717605-11-1		given by Q = A V V = g/A Q is dist. harge A = c/s area of duct.	Where, V is the average where V is the aver	ed flow through a closed duct is defined a	Friction factor in a pipe flow ->	a certain steady rate through some rout sodutions of pipe flow proble or pipe network system.	Aion that a hydraulic engineer needs in the power required to farce fluids of	* Viscous Elows through Pipes	Page No:
* parcy's friction factor (f) is 1 times of	hilders $L = (\frac{1}{2}) e^{2}$	f = Oh AP	To do quay with the factor 1/4. Darcy defined friction factor .f	Dh = 4A = 4× c/s area = Hydraula S Welted Penimeter Dra.	$\frac{(t = 1) \frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $	$Cf = \Delta P \times A$	$\frac{1}{2}(F \xi N^2) = \frac{\Delta P \times A}{SL}$	S ⇒ Wetted perimeter. From Eqn O × 2	AP => Piczometric pressure drop A => c/s area	$T_{wall} = \Delta P \times A$ $S \perp -3$ Where $T_{w} \gg$ Shear drass	Page No.	

	Page No:		
and and a second se	Date.		Page No: Date.
-	A = c/s area		
-	P = wetted perimeter		Minor Energy losses -> / Lasses due to
T	V = mean velocity of Flow		Geometric chapages
-1	1. Length of pipe.		T loss of head due to function is the
			me less & calculated from Daven e
	The ratio A -> Hydraulic mean deal		Chazy's formula: Loss of mechanical en
*	as hydraulis P radius denoted by m.		checks the viscosity of fluid which a
	di ilyanduni interneti		eight friction between the layers of fund
in they	For circular pipe = $A = \frac{174d^2}{4} = d$		use interest the solid surface e adia
The second second	P TTd 4	M.	and between ne buy surger avail
1	P-1		Cent flarg rays privated into interview
1	A M.		of meeting termed to loss of energy
	$hL - H \times I \times V^2 \times I$		Apart from friction lass of apera due
	· · · · · · · · · · · · · · · · · · ·		to abriet change in class To land air
	12- hi x 89		these losses are nealisticle hence called
	f' L		minor lasses but considered in the
	- Pa hf		al hindi 10350 by alsieria (// 3/
	- SO XMX L		Bot PIPS
			Lasses due to Sudden onlargement ->
	V = 39 m hf		100000 dire to sudden endigenedit
10	J f' J L		
	V = C [mi] Chezu's fronule		
4 1 4			111
	where C = Leg + knowin as cherry		D Sudden averagion of Eland at infinite
	he f constant		ip. traite enlagement 3 englargement (Exit
	i=Loss of head per	L · ·	streamline diverges from loss in flow se-
	unit length of pipe	2	protion due to abript change results
St		1 Hallan	in formation of turbulent eddies &
			converts mechanical energy into intermo-
			leowar energy.

1 - 1 - 1

	Page No Date				Page No: Date	
	Sudden expansion lass. $(v_1 - v_2)^2$ $= \frac{v_1^2}{2g} \left[1 - \left(\frac{v_2}{v_1}\right)^2 \right]^2$ $= A_1 V_1 = A_2 V_2 V_2 = A_1$	are stie less This corr	ean tube s than the s section bracta, a an to fill	tion the cl becomes not of the of tube ofter which pipe	the mini smaller is known the stree	of the mum & pipe os Vena m wides
	$h_{\perp} = \frac{V_{\perp}^2}{2q} \left[1 - \left(\frac{A_{\perp}}{A_{\perp}}\right)^2 \right] - 0$				C. Vena Con	A2 tracta cc
2)	$Exit loss \rightarrow A_2 \rightarrow \infty$. I the fluid ve loaities are arrested in a large reserve the entire k.E. at the outlet of pipe is dissibuted into the intermolecular en-	Bu	hL =	$= \frac{V_2^2}{2g} \left[\frac{2g}{2g} \right]$	A2 -1] Ac	$\frac{2}{2}$
	ergn, of the reservoir through the creation of turbulent eddies hence loss o is u- equally termed as exit loss for the pr-	<u>. +</u>	h	$= \frac{V_2^2}{2g} \left[\frac{1}{1 - K} + V_2 \right]$	$\frac{1}{C_c}$	2
	discharge end of pipe. when $A_2 \rightarrow \infty$ eq." D becomes		Whe			2
	$h_{L} = \frac{M}{2g}$	*	The val	lue of K	depend	
3)	Losses due to sudden contraction -> Streamlines converges abruptly due to Contraction in areq. However immedia-	4)	Entry	1005 → Te for A2 A1	$A_1 \rightarrow = 0 - k$	0 the K=0:
	tely downstream of the junction of			h_= o.E	$\frac{1}{29}$	$h_1 = k V_2^2$

		3) Dedmeter of alper	bend	2) Padius of curvature of	k depends on 1) Angle of bend	t => (oefficient of bend	LE .	$h_b = k \sqrt{2}$	energy is last.	boundary & formation of eddies. Thus	Due to bend flow seperation from the	5) Loss of head due to Bend in pipe ->		K=0=X =1 K=0		aline profition Id - d.	Cuntum Sola (111) - Contad.	l (), padrus	Separating it k=0 ic. Nos entry loss.	fluid can follow the boundary without	3) If the pipe inlet is well rounded the	of head U k=1) For potriding pipe causes greater las.	for no potende k=0.5	large reservoir into a sharp edged on.	1) Entry loss due to flow of fluid from a			Page No.	
				Such as valves couplinas etc.	K => Gefficient of pipe fittings	- 29	$h_1 = K V^2$	7) Loss of head in various pipe fittings -		deain.	1-1 after which sheam of fluid widens	* Vano contracta is formed beyond section	A-Q contracta.	Co a a Area at vena	Vc > velocity at vend contracta.	29	$h_{L} = (v_{c} - v)^{T}$	a state of the sta	v -> velocity of liquid in pro-	A > Areq of pipe	where, a > Max. area of obstruction	29 [C.(A-0)]	$h_{i} = \sqrt{2} \left[- A_{i} - 1 \right] $		n. pipe t	6) Loss of head due to an obstruction in	0	2 T VIII	Page No:	

Paga No: Date.	Paga No:
* Hydraulic Gradient iline & Total energy line	sependr on
V2 Energy Gradient Ann enlagement or	contraction of
line c Total) Sudden emangeme	•
the pipe and sector	
Hydrattic 1/24.	fitted in syst
* It pump of tubulic	nice arross h
em then I EL wowa show	bead death
pump by an amount at	Turbine L
* Total & Energy and red or about fall d. acic	head evitate
the contour of the thel	ncaa chincle
energy per unit with the line international .	have the
head of P wight or the total * HGL & TEL meets at r	eservoir wien
(gg, 2g, 2g, 2g, zg, at a c/s, as ord, vebrity is negligible.	
Fine (TT)	<u> </u>
TION: CIEL)	1.1010
* Hulcarly gradient line in the state	
dattion the sum of potential a preserve	<u> </u>
protiting the solid of potential & pressure	
the cane gg = herrissa (distance upan) -	1:00
the Floral a is be subtractione appril	a . k
head from sources gradient line. (Hais	24 E 1
incore pully grounder inter chiero	0
* TEL decreases due to frictional bead	
less in the properties + nozzle.	
* HGL rupe below TEL & decreases	Size 1
shorply in nozzle due to decrease in	
pressure in nozzle. It can jump also	
where increase in pressure & decrear	
in velocity.	

	Velocity distribution Le Assumptions - Probablic S() Fully developed flow i.e. $\frac{3V_z}{3V_z} = 0$ 2) No rotational component or $\frac{3V_z}{3Z}$ irrotational = .	Miscous incompressible fully developed lan: mar flow through circular tubel proe [Hagen Poiseuille flow) - Hagen Sicesi dist. I shear stress dist. No Verio V2	Ewer equation -> It govern's ideal fluid flow where Niscosity is zero it inviscia flow. Bernowlli equation -> Governs fluid flow which is inviscid, incompressible - stead,	 1) Continuity equation 2) Momentum equation[i.e. Navier stokes 2) equation] Viscows effects considered 3) Energy equation Viscows effects considered 	Viscous Flow Fluid flow: is governed: by requation of Mations like
T OP	4's take momentum or Navier stakes eq. $\frac{\partial v_1}{\partial t} + v_1 \frac{\partial v_2}{\partial t} + \frac{v_0}{2} \frac{\partial v_1}{2} - \frac{v_0}{20} - \frac{v_0}{2} + \frac{v_1}{22} \frac{\partial v_1}{22}$ $\frac{\partial \rho^*}{\partial t} + \rho \left[\frac{\partial}{\partial r} \left(\frac{1}{2} \frac{2}{2} (rv_1) \right) + \frac{1}{2} \frac{\partial^2 v_1}{20^2} + \frac{\partial^2 v_2}{22^2} - \frac{2}{20^2} \frac{\partial^2 v_1}{22^2} + \frac{\partial^2 v_2}{22^2} + \frac{\partial^2 v_2}{22^2} \right]$	Above eq implies that $r V_x$ is not a function of r . By nonpenetration bound- ary cond ⁿ at the wall implies $V_r = o$ everywhere in the flow except at $r = o$. which is singularity. Hence for fully de- veloped flow only one velocity component $V_2 = V_2 (r)$.	$\frac{\partial}{\partial x} S x V_{x} = 0$ for incompressible flow $S = const$ $\frac{\partial}{\partial x} x V_{x} = 0$	is given by $\frac{1}{r} = \frac{2}{r} \left(\frac{2}{r} \sqrt{r}\right) + \frac{1}{r} = \frac{2}{2} \frac{2}{r} \sqrt{r}$ under assumptions this eq meduces to	3) Flow is axially symmetric 20 (any variable) = 0

Navier stokes equation cylindvical co-ordinates > 5. Therefore p* is function z only In other words p* is not a function of Since p* = fre) 4 equation とうち Abure eqn under assumptions 2126 206 21 + (20 x) - 20 2126 + 2126 - 1 + (210 x) - 20 0 = - 20x + 21 + 20 - = 0 Multiply both sides above $\frac{dp^*}{dp^*} = \mu \frac{1}{2} \frac{d}{dr} \left(-\frac{d}{2\sqrt{2}} \right)$ 0 = der = u1 dr assumptions - 2P * dy [r dv2] 27: u is f(r) only Y dV2 Paga No: Date. Navier stokes Y dv2 1) - C. (say). - (1) Hence Vz = venterline (avoiding loganithmic singulari) we must have ci = 0 Also, boundary rond are no - slip at wal To ensure finite velocity at the channel tormer $(V_2=0 \text{ at } \gamma = R)$ results in, ' finite velocity at the centreline. The Thues , totegrating w. r.t. r. . I algrahing Dividing both sides by r 1 1 trom $V_2 = \frac{CY^2}{4\mu} + C_1 \ln \pi + C_2$ r dv2 = V2 = $\frac{V_2 - C}{4 \mu} \left(\frac{R^2 - \tau^2}{2} \right)$ $0 = \frac{(\chi^2)}{4 \chi^2} + \zeta_1 \ln 2 + \zeta_2$ $\zeta_2 = -CR^2$ cg? () we can write dy dr $= \frac{Cr^2}{4x} - \frac{CR^2}{CR^2}$ $- \frac{Q1}{4xi} \frac{dp^{*}}{dz} (p^{2} - r^{2})$ Cr2 24 + (Date. Page No:

Taking common R ²	Page No: Date.
$V_{2} = -\frac{R^{2} dp^{*} (1 - r^{2})}{4 \mu d2} = 0$	$= \frac{2 \Pi}{4 \Re} \frac{d p^*}{d 2} \left[\frac{p^2 I^2}{2} \frac{r^4}{4} \right]^R$
* Above eq' shows that the axial velocity of	$= -\frac{2\pi}{2} \frac{dp^*}{dz} \left[\frac{p^4}{2} - \frac{p^4}{4} \right]$
flow through a circular tube has a parabolic variation along r.	
The max velocity occures at the cent line when $r = 0$	$\frac{\sqrt{2} a vg}{224} = \frac{u}{d2} \frac{dp}{42} \frac{p^2}{4}$
$\frac{V_{zmax} = -R^2 dp^*}{4u dz}$	$\frac{V_{z A x g}}{8 \mu} = -\frac{R^2}{8 \mu} \frac{dP^*}{dz} = 2$
$\frac{1}{\sqrt{2}} = \left(1 - \frac{r^2}{p^2}\right)$	* Ratio of max. velocity to avg. velocity
Volume flow rate	$\frac{\sqrt{z} \max}{\sqrt{z} \sqrt{z} \sqrt{y}} = \frac{-k}{4x} \frac{d}{d^2}$
$Q = \int V_2 dA$ $Avg. Velocity Vzavg = Q = \int V_2 2 \Pi dA$	$\frac{\sqrt{z}max}{\sqrt{z}avg} = 2$
$\frac{R}{\text{Let} = 2\pi \int_{0}^{\infty} \frac{V_2 \cdot r dr}{r}$	* Shear stress distribution in pipe -> shear stress at any location
$= 2\Pi \int -\underline{I} \frac{dP^*}{dz} (R^2 - r^2) r dr.$	$\overline{\zeta} = \overline{\zeta_{12}} = e_1 \left(\frac{\partial V_1}{\partial 2} + \frac{\partial V_2}{\partial 1} \right)$ Since $V_1 = 0 + V_2$ is $f(r) only$.
$= -2\Pi \dot{d}P^{*} \int (P^{2}r - r^{3})dr$ $= -2\Pi \dot{d}P^{*} \int (P^{2}r - r^{3})dr$	Z= -udvz dr

trom. the measured in the aced to compensate to the reduction fluid. It is denoted by is approx equal to organized times of to the boundary of solid body, by which the boundary showed be displ mee point where the Boundary the distance in flow rate ' on account of boundary layer formation. Displacement thickness -> displacement thickness gives the reproentation of loss in flow rate I deal or potential flow hence Yas sheam velocity F first flow is not good. Hence mideal = layer thickness -> Distance AL> A2 boundary of the salid heady Mass = m = Sav. U= 0.99 Um measured ò velocity of the fluid x-direction to the loss of flow is more S (dyx1) Ua (Vo) of the Date. perpendicular on . (\$\$) A2 0, Also, asured the could body, by which the boundary fluid on account of boundary layer tothe reduction in momentum of the flowing should be Ickness is defined as the distance, me Momentum Thickness (0) -> motion. 1 denoted v (S* Mioss = 550 W Mireal force (OSS 0, perpendicular to the boundary of ſ XI) US -T = Ma. alsplaced N sy(vo-u)dy = 11 (p 11 - S (dyxi) U m vz wivi 5 0 3 (S* X1) Va where xpg 3 by Q. N2 - V1 1 11 (Um-U) Sdy (No- U) to compensate for 8° = bisplacement Page No: Date. in dr 80 1-4)dy. 4D S (OXI) Momentum the 1 thickness. × UO× UO

	Marchi C II For II 7	Equip
	Miomentum Q du	2. 0 1 . 10 Mart 10 101
Ĩ	Thickness -) Uso Uso 1	$16540500^2 - u^2] $
1	8	2 = sbs 43
- *	A is master lass in force is	** 8
-	a 13 greater 1033 11 Toole IS Mare	$S = \int (U (V_0^2 - u^2))$
		() a) (a) ay
	Energy thickness -> distance men	8
in the set	perpendicular to the boundary	** (1) 5
	lation to shirt hand of the	$\delta = \int \frac{dy}{dy} = \int \frac{dy}{dy}$
_	solid body by which boundary show	
	be displaced to compensate for "	
	reduction in kinetic energy of the	
-	wing Chuld have have been	10 000000000000000000000000000000000000
-	mind fillia alle to boundary layers	Von Karman momentum integral equation-
_	modion= denoted by Stra.	
		70 _ 20
1 1 1 24	$KE = V_0 mv^2$	· Ruz ax
	Al-cone of in 1	3.00
	Absence of boundary layer	where $Q = Momentum thickness$
	K.E = V (SUbdy) Up	To = Twall
lante or	when boundary. Inver exist	man - Canada and a second state of the
in the second	EF 1 1 1 1 1 2	
-	Le = 1/28 (gubdy) 4	
1 <u>114</u>	LOSS IN K.E = 1 eub [112 12]	
- tel	12 3 10 [000 = 0] 01	entrates a farma a logat
	<u> </u>	
	LOSS of KE Uppush with a church	
	The let the state of the	
	with velocity U	2
	= $1 \times m \times v^2 = \frac{1}{2} (8 \times area \times v^{e_0}) \times v^2$	(Ne
	2 2 2 3	
1.2	=1 ×10×1=× c**	
	12×(S× D×0 × Ud) 00	i i i i i i i i i i i i i i i i i i i
	1 01 AX 3 (2)	
	= 12 508 000.	server a server se
		in the second se

IN THE against surface friction at the expense of on decreasing. Along the length of the be to the solid layer in contact with the layer adjacent F. ody at a tertain point austage may exchange process. Thus the velocity goe Separation of boundary layerbody . the ls reavered cent to the solid surface dy if it can't come when the boundary layer may not The In the boundary Effect of pressure able to keep sticking to the solid by kinetic energy. Thiss loss of the li boundary layer separates from soll ス resistance offered by solid body al co 3 from the immediate flui surface through momentum layer, 0 Pmult provide K.E to overcom Aladith the fluid layer and 5 ale a Page No: Date. 2 0 Imr. Note * & hence 5 chion. of layer In region decreases ect of is unable to the surface : It stage comes, resistance reduce the momentum of the fluid increases hence Increases when the momentum is unable to overcome: asts separating from the surface at the pt. paint C. Along the hence S. & flow is U-taking place in reverse dire-Thus the positive pressure gradient the wurface restistance & boundary layer st. ration point s at to separate the is on the verge of separated. 17=0 Location of seperation point -> xe he noipar 140 pressure stadient pressure & decreases < velocity positive CSD 0 ABC ite. than acclerated I decreases. Thus the combined eff -ve the i drea of dp pressure producent & subface pressure inercares & velocity The flow has separated is positive . Hence k.E. pressure is min at the region CSD. area of flow boundary layer. 90 flow Date. Page No: de is negative - 22 in this region decreases 11 0 ···· le How The helps oppa.

5 4 . . . b 2 * 080 edding and when in size up to the downshream is the wake is formed asymmetry vemain-At a Reritor the flow separates in by two Flow H Ke > 40 Re~1 reunities dimund the whinder. onset of penioducity. he 0 Re>40. S. past over cylinder. Rev1 the symmetric eddies. 1 7 =0 steady & symmetrical bull prov vortices & finally the wake starts sh Oscillation in the wake induce = + ve ---Y . separate. Re of about 40. Pe = Upp in b. the stream tend Flow smoothly divides Re~ 4 Re gol'e attached Ihe 0 flow will b The eduts 500 7 0 0 about to to about 10 0 A the tices shed Flow ever perioducity is eventually induced in the shedding t. anatively shed clockwise & counter clt. vormenon. Vostex periodicity equently der the cylinder. The shedding of vortices alteshedding frequency. This is the cause of vebrations peniedricity induces rnately from the top 1 cylinder, a creculation is produced and consso um singing 30 The formula works tor Shading trequency Each time a vortex is shed from the cylinder & the regular pattern of altproduces alternating lateral former field with the torm the alternatively from a top 4 bottom of 2 flutter. at the an unbalanced aircrafts this Von Karmann vortex, street. How-00 50 telephone, wires in the breeze. 1 Rez qo the eddies are 0-198 same frequency of the vortex chedding pheno. given by lateral tesce acts on trequency of voster bottom of the cylinphenomenon is kno-250 < Re < 2×105 1 19.7 Re Caus

FM&HM

1.. Differential manometers are used to measure the difference of pressures between two points in a pipe or in two different pipes. There are two types of differential manometers.

- 1. U-tube upright differential manometer
- 2. U-tube inverted differential manometer

2.. Total Pressure and Centre of Pressure

The total pressure is defined as the force exerted by a static fluid on a surface (either plane or curved) when the fluid comes in contact with the surface. This force is always normal to the surface. The centre of pressure is defined as the point of application of the resultant pressure on the surface.

3.. **Types of fluid flow:**

- Steady and Unsteady flows: ...
- Uniform and Non-uniform fluid flow: ...
- Laminar, and Turbulent fluid flow: ...
- Compressible and Incompressible fluid flow: ...
- Rotational and irrotational Fluid flow: ...
- One, Two and Three-dimensional **fluid Flow**:

4..L aminar flow or streamline flow in pipes (or tubes) occurs when a fluid flows in parallel layers, with no disruption between the layers. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with all particles moving in straight lines parallel to the pipe walls. Any lateral mixing (mixing at right angles to the flow direction) occurs by the action of diffusion between layers of the liquid. Diffusion mixing can be slow however if the diameter of the pipe of tube is small then this diffusive mixing can be very significant.

Turbulent flow is a flow regime characterized by chaotic property changes. This includes rapid variation of pressure and flow velocity in space and time. In contrast to laminar flow the fluid no longer travels in layers and mixing across the

tube is highly efficient. Flows at Reynolds numbers larger than 4000 are typically (but not necessarily) turbulent, while those at low Reynolds numbers below 2300 usually remain laminar. Flow in the range of Reynolds numbers 2300 to 4000 and known as transition.

5.. Discharge (also called flow rate)

The amount of fluid passing a section of a stream in unit time is called the discharge. If v is the mean velocity and A is the cross sectional area, the discharge Q is defined by Q = Av which is known as volume flow rate. Discharge is also expressed as mass flow rate and weight flow rate.

6. **Continuity equation** states that the rate at which mass enters a system is equal to the rate at which mass leaves the system.

```
volume flow out over A_2 = A_2 V_2 \Delta t

Therefore

mass in over A = \rho A_1 V_1 \Delta t

mass out over A = \rho A_2 V_2 \Delta t

So: \rho A_1 V_1 = \rho A_2 V_2
```

7..

7. What is flow rate?

Flow rate is an indication of how fast a substance move through a conduit from one place to another.

Flow rate can also be used to determine the distance a substance moves over a period of time.

Flow rate is usually expressed as Volume Flow rate and Mass Flow rate.

8. Hydraulic Coefficients include Coefficient of contraction, Coefficient of velocity, Coefficient of discharge and Coefficient of resistance. The following are the hydraulic coefficients:

1. Coefficient of contraction (Cc). It is defined as the ratio of area of jet at *vena contracta (ac) to the area of orifice (a).

The point at which the streamlines first become parallel is called vena

contracta. The cross-sectional area of the jet at vena contrata is less than that of the orifice. The theoretical velocity of jet at vena contracta is given by

This expression is called Torricelli's theorem.

2. Coefficient of velocity (Cv). It is defined as the ratio of the actual velocity of the jet at vena contracta (v) to the theoretical velocity.

3. Coefficient of discharge (Cd). It is defined as the ratio of the actual discharge through the orifice (Q) to the theoretical discharge (Qth). The coefficient of discharge is equal to the product of Cc and Cv.

4. Coefficient of resistance (Cr). It is defined as the ratio of loss of head in the orifice to the head of water available at the exit of the orifice.

9. The proportion of real speed of the stream, at vena-contract a, to the hypothetical speed is known as the coefficient of speed. Write the equation for coefficient of velocity.Cv

10. The **discharge coefficient** (also known as **coefficient of discharge** or **efflux coefficient**) is the ratio of the actual discharge to the theoretical discharge, i.e., the ratio of the <u>mass flow rate</u> at the discharge end of the <u>nozzle</u> to that of an ideal nozzle which expands an identical <u>working fluid</u> from the same initial conditions to the same exit pressures.

11. A **notch** refers to a deliberately introduced v-shaped, u-shaped or circular defect in a planar material. In structural components, a notch causes a <u>stress concentration</u> which can result in the initiation and growth of <u>fatigue</u> cracks. Notches are used in <u>materials characterisation</u> to determine <u>fracture mechanics</u> related properties such as <u>fracture</u> toughness and rates of fatigue crack growth.

Notches are commonly used in material impact tests where a morphological crack of a controlled origin is necessary to achieve standardised characterisation of fracture resistance of the material.

12. A **weir** is a barrier across the width of a river that alters the flow characteristics of water and usually results in a change in the height of the river level. There are many designs of weir, but commonly water flows freely over the top of the weir crest before cascading down to a lower level.

13.. A **piezometer** is either a device used to measure liquid <u>pressure</u> in a system by measuring the height to which a column of the liquid rises against gravity, or a device which measures the pressure (more precisely, the <u>piezometric head</u>) of <u>groundwater</u> at a specific point. A piezometer is designed to measure static pressures, and thus differs from a <u>pitot tube</u> by not being pointed into the fluid flow.

14.. A **triangular notch** gives much more accurate results in low discharge conditions, as compared to the conventional **rectangular notch**. Also, only one reading (the head) is required to calculate the discharge rate, making calculations much easier. However, it cannot handle

large volumes of flow rate accurately.

15..

- 1. . <u>Simple manometer</u>
 - A. Piezometer
 - B. U-tube manometer
- 2. <u>Differential manometer</u>
 - A. U-Tube differential manometer
 - B. Inverted U-Tube differential manometer
- 3. <u>Micro manometer</u>

LONG

1..Pascal's Law Derivation

Consider an arbitrary right-angled prismatic triangle in the liquid of density rho. Since the prismatic element is very small, every point is considered to be at the same depth from the liquid surface. The <u>effect of gravity</u> is also same at all these points.

Let ad, bd, and cd be the area of the faces ABFE, ABDC, and CDFE respectively.

Let P₁, P₂, and P₃ be the pressure on the faces ABFE, ABDC, and CDFE.

Pressure exerts force which is normal to the surface. Let P_1 exert force F_1 on the surface ABFE, P_2 exert force F_2 on the surface ABDC, and P_3 exert force F_3 on the surface CDFE.

Therefore, Force F_1 , F_2 , and F_3 is given as: $F_1 = P_1 \times \text{area of ABFE} = P_1 \text{ ad}$ $F_2 = P_2 \times \text{area of ABDC} = P_2 \text{ bd}$ $F_3 = P_3 \times \text{area of CDFE} = P_3 \text{ cd}$

Also, $\sin\theta = ba \cos\theta = ca$ The net force on the prism will be zero since the prism is in equilibrium.

```
F_1 \sin \theta = F_2

F_1 \cos \theta = F_3

P_1 \text{ ad } ba = P_2 \text{ bd (equ 1)}

P_1 \text{ ad } ca = P_3 \text{ cd (equ 2)}

From 1 and 2

P_1 = P_2 \text{ and } P_1 = P_3

\therefore P_{1} = P_2 = P_3
```

2...Specific volume is defined as the number of cubic meters occupied by onekilogram of <u>matter</u>. It is the ratio of a material's volume to its <u>mass</u>, which is the proportional to density. Specific volume may be calculated or

measured for any state of matter, but it is most often used in calculations involving <u>gases</u>.

The standard unit for specific volume is cubic meters per kilogram (m_3/kg), although it may be expressed in terms of milliliters per gram (mL/g) or cubic feet per pound (ft_3/lb).

Specific Volume Formulas

There are three common formulas used to calculate specific volume (v):

- 1. $\mathbf{v} = \mathbf{V} / \mathbf{m}$ where V is volume and m is mass
- 2. $\mathbf{v} = \mathbf{1} / \boldsymbol{\rho} = \boldsymbol{\rho}^{-1}$ where $\boldsymbol{\rho}$ is density
- 3. **v** = **RT** / **PM** = **RT** / **P** where R is the ideal <u>gas constant</u>, T is temperature, P is pressure, and M is the <u>molarity</u>

Specific Volume and Specific Gravity

If the specific volumes of two substances are known, this information may be used to calculate and compare their densities. Comparing density yields <u>specific gravity</u> values. One application of specific gravity is to predict whether a substance will float or sink when placed on another substance.

Specific Gravity

Finally, the specific gravity is used to compare the density of a fluid to the density of water. This is done by taking the ratio the density of the fluid in relation to water. The resulting ratio will be unit less. However, even though it is unit less, since density isn't unit less you will need to make sure you are using the same system of units for both fluid before finding the specific gravity.

3...What is Surface Tension?

Surface tension is a phenomenon in which the surface of a liquid, where the liquid is in contact with the gas, acts like a thin elastic sheet. The term surface tension is used only when the liquid is in contact with a gas (ex: when opened to the normal atmosphere). The term "interface tension" is used for the layer between two liquid. Attractions between different chemical species cause the liquid molecules to unite together. The liquid molecules in the surface of the liquid are attracted by the molecules in the middle of the liquid. This is a type of <u>cohesion</u>. But the attraction between liquid molecules and air molecules (or the <u>adhesive forces</u>) are negligible. Therefore, this surface layer of liquid molecules acts as an elastic membrane. The surface layer of liquid molecules is under <u>tension</u> because there are no enough attraction forces to balance the cohesive forces act on them, thus this condition is called surface tension.

Surface tension is a phenomenon in which the surface of a liquid, where the liquid is in contact with the gas, acts like a thin elastic sheet.

Surface tension is the force on the surface of a liquid exposed to air.

Surface tension is measured as the force applied to a certain length of the liquid given by the unit N/m (Newton per meter).

What is Capillary Action?

Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, or in opposition to, external forces like gravity. It can be observed as liquid drawing through a capillary tube in the upward direction.

The capillary action occurs because of the <u>intermolecular forces</u> between liquid molecules and the surface of the capillary tube. Therefore, it occurs due to adhesion forces. When the diameter of the tube is sufficiently small, the liquid rises through the tube due to both adhesive and cohesive forces. The <u>cohesive forces</u> (attraction forces between similar molecules) cause the molecules to be drawn upward.

When a capillary tube is placed in a liquid, a meniscus is formed at the edge of the tube. Then, due to adhesion forces between liquid molecules and the wall of the tube, the liquid is pulled up until the gravitational force act on that amount of liquid is enough to overcome the adhesive force. Then the liquid molecules are pulled up due to cohesion.

Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, or even in opposition to, external forces like gravity.

Capillary action is the flow of a liquid against an external force without any assistance.

Capillary action is measured as the height of liquid column that is drawn upward, against the gravity given by the unit m (meter

4....

Vapor pressure (or vapour pressure in <u>British English</u>; <u>see spelling</u> <u>differences</u>) or **equilibrium vapor pressure** is defined as the <u>pressure</u> exerted by a <u>vapor</u> in <u>thermodynamic equilibrium</u> with its <u>condensed phases</u> (solid or liquid) at a given temperature in a <u>closed</u> <u>system</u>. The equilibrium vapor pressure is an indication of a liquid's <u>evaporation</u> rate. It relates to the tendency of particles to escape from the liquid (or a solid). A substance with a high vapor pressure at normal temperatures is often referred to as <u>volatile</u>. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure.

The vapor pressure of any substance increases non-linearly with temperature according to the <u>Clausius–Clapeyron relation</u>. The <u>atmospheric pressure boiling point</u> of a liquid (also known as the <u>normal boiling point</u>) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome <u>atmospheric pressure</u> and lift the liquid to form vapor bubbles inside the bulk of the substance. <u>Bubble</u> formation deeper in the liquid requires a higher temperature due to the higher fluid pressure, because fluid pressure increases above the atmospheric pressure as the depth increases. More important at shallow depths is the higher temperature required to start bubble formation. The surface tension of the bubble wall leads to an overpressure in the very small, initial bubbles.

The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called <u>partial pressure</u>. For example, air at sea level, and saturated with water vapor at 20 °C, has partial pressures of about 2.3 kPa of water, 78 kPa of <u>nitrogen</u>, 21 kPa of <u>oxygen</u> and 0.9 kPa of <u>argon</u>, totaling 102.2 kPa, making the basis for <u>standard atmospheric pressure</u>.

CAVITATION

Cavitation is a phenomenon in which rapid changes of <u>pressure</u> in a liquid lead to the formation of small vapor-filled cavities in places where the pressure is relatively low.

When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate <u>shock wave</u> that is strong very close to the bubble, but rapidly weakens as it propagates away from the bubble.

Cavitation is a significant cause of wear in some <u>engineering</u> contexts. Collapsing voids that implode near to a metal surface cause <u>cyclic</u> <u>stress</u> through repeated implosion. This results in surface fatigue of the metal causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial (or transient) cavitation and non-inertial cavitation.

The process in which a void or bubble in a liquid rapidly collapses, producing a <u>shock wave</u>, is called inertial cavitation. Inertial cavitation occurs in nature in the strikes of <u>mantis shrimps</u> and <u>pistol shrimps</u>, as well as in the <u>vascular tissues</u> of plants. In man-made objects, it can occur in <u>control valves</u>, <u>pumps</u>, <u>propellers</u> and <u>impellers</u>.

Non-inertial cavitation is the process in which a bubble in a fluid is forced to oscillate in size or shape due to some form of energy input, such as an <u>acoustic field</u>. Such cavitation is often employed in <u>ultrasonic</u> <u>cleaning</u> baths and can also be observed in pumps, propellers, etc.

Since the shock waves formed by collapse of the voids are strong enough to cause significant damage to parts, cavitation is typically an undesirable phenomenon in machinery (although desirable if intentionally used, for example, to sterilize contaminated surgical instruments, break down pollutants in water purification systems, <u>emulsify</u> tissue for cataract surgery or kidney stone <u>lithotripsy</u>, or <u>homogenize</u> fluids). It is very often specifically avoided in the design of machines such as turbines or propellers, and

eliminating cavitation is a major field in the study of <u>fluid dynamics</u>. However, it is sometimes useful and does not cause damage when the bubbles collapse away from machinery, such as in <u>supercavitation</u>.